Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Evaluation of Low-Thrust Transfers via Deep Neural Networks (1902.03738v1)

Published 11 Feb 2019 in cs.LG and astro-ph.IM

Abstract: The design of low-thrust-based multitarget interplanetary missions requires a method to quickly and accurately evaluate the low-thrust transfer between any two visiting targets. Complete evaluation of the low-thrust transfer includes not only the estimation of the optimal fuel consumption but also the judgment of transfer feasibility. In this paper, a deep neural network (DNN)-based method is proposed for quickly evaluating low-thrust transfer. An efficient database generation method is developed for obtaining both the infeasible and optimal transfers. A classification DNN and a regression DNN are trained based on the infeasible and optimal transfers to judge the transfer feasibility and estimate the optimal fuel consumption, respectively. The simulation results show that the well-trained DNNs are capable of quickly determining the transfer feasibility with a correct rate of greater than 98% and approximating the optimal transfer fuel consumption with a relative estimation error of less than 0.4%. The tests on two asteroid chains further show the superiority of the DNN-based method for application to the design of low-thrust-based multitarget interplanetary missions

Summary

We haven't generated a summary for this paper yet.