Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Manifold Optimization Assisted Gaussian Variational Approximation (1902.03718v2)

Published 11 Feb 2019 in cs.LG and stat.ML

Abstract: Gaussian variational approximation is a popular methodology to approximate posterior distributions in Bayesian inference especially in high dimensional and large data settings. To control the computational cost while being able to capture the correlations among the variables, the low rank plus diagonal structure was introduced in the previous literature for the Gaussian covariance matrix. For a specific Bayesian learning task, the uniqueness of the solution is usually ensured by imposing stringent constraints on the parameterized covariance matrix, which could break down during the optimization process. In this paper, we consider two special covariance structures by applying the Stiefel manifold and Grassmann manifold constraints, to address the optimization difficulty in such factorization architectures. To speed up the updating process with minimum hyperparameter-tuning efforts, we design two new schemes of Riemannian stochastic gradient descent methods and compare them with other existing methods of optimizing on manifolds. In addition to fixing the identification issue, results from both simulation and empirical experiments prove the ability of the proposed methods of obtaining competitive accuracy and comparable converge speed in both high-dimensional and large-scale learning tasks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.