Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Code Smell Detection using Multilabel Classification Approach (1902.03222v1)

Published 8 Feb 2019 in cs.SE

Abstract: Code smells are characteristics of the software that indicates a code or design problem which can make software hard to understand, evolve, and maintain. The code smell detection tools proposed in the literature produce different results, as smells are informally defined or are subjective in nature. To address the issue of tool subjectivity, machine learning techniques have been proposed which can learn and distinguish the characteristics of smelly and non-smelly source code elements (classes or methods). However, the existing machine learning techniques can only detect a single type of smell in the code element which does not correspond to a real-world scenario. In this paper, we have used multilabel classification methods to detect whether the given code element is affected by multiple smells or not. We have considered two code smell datasets for this work and converted them into a multilabel dataset. In our experimentation, Two multilabel methods performed on the converted dataset which demonstrates good performances in the 10-fold cross-validation, using ten repetitions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (57)

Summary

We haven't generated a summary for this paper yet.