Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing the Order of Multivariate Normal Mixture Models (1902.02920v1)

Published 8 Feb 2019 in math.ST, econ.EM, and stat.TH

Abstract: Finite mixtures of multivariate normal distributions have been widely used in empirical applications in diverse fields such as statistical genetics and statistical finance. Testing the number of components in multivariate normal mixture models is a long-standing challenge even in the most important case of testing homogeneity. This paper develops likelihood-based tests of the null hypothesis of $M_0$ components against the alternative hypothesis of $M_0 + 1$ components for a general $M_0 \geq 1$. For heteroscedastic normal mixtures, we propose an EM test and derive the asymptotic distribution of the EM test statistic. For homoscedastic normal mixtures, we derive the asymptotic distribution of the likelihood ratio test statistic. We also derive the asymptotic distribution of the likelihood ratio test statistic and EM test statistic under local alternatives and show the validity of parametric bootstrap. The simulations show that the proposed test has good finite sample size and power properties.

Summary

We haven't generated a summary for this paper yet.