Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential ergodicity for stochastic equations of nonnegative processes with jumps (1902.02833v1)

Published 7 Feb 2019 in math.PR

Abstract: In this work, we study ergodicity of continuous time Markov processes on state space $\mathbb{R}_{\geq 0} := [0,\infty)$ obtained as unique strong solutions to stochastic equations with jumps. Our first main result establishes exponential ergodicity in the Wasserstein distance, provided the stochastic equation satisfies a comparison principle and the drift is dissipative. In particular, it is applicable to continuous-state branching processes with immigration (shorted as CBI processes), possibly with nonlinear branching mechanisms or in L\'evy random environments. Our second main result establishes exponential ergodicity in total variation distance for subcritical CBI processes under a first moment condition on the jump measure for branching and a $\log$-moment condition on the jump measure for immigration.

Summary

We haven't generated a summary for this paper yet.