Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The few-get-richer: a surprising consequence of popularity-based rankings (1902.02580v2)

Published 7 Feb 2019 in cs.IR, cs.CY, and cs.LG

Abstract: Ranking algorithms play a crucial role in online platforms ranging from search engines to recommender systems. In this paper, we identify a surprising consequence of popularity-based rankings: the fewer the items reporting a given signal, the higher the share of the overall traffic they collectively attract. This few-get-richer effect emerges in settings where there are few distinct classes of items (e.g., left-leaning news sources versus right-leaning news sources), and items are ranked based on their popularity. We demonstrate analytically that the few-get-richer effect emerges when people tend to click on top-ranked items and have heterogeneous preferences for the classes of items. Using simulations, we analyze how the strength of the effect changes with assumptions about the setting and human behavior. We also test our predictions experimentally in an online experiment with human participants. Our findings have important implications to understand the spread of misinformation.

Citations (28)

Summary

We haven't generated a summary for this paper yet.