Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirically Accelerating Scaled Gradient Projection Using Deep Neural Network For Inverse Problems In Image Processing (1902.02449v3)

Published 7 Feb 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Recently, deep neural networks (DNNs) have shown advantages in accelerating optimization algorithms. One approach is to unfold finite number of iterations of conventional optimization algorithms and to learn parameters in the algorithms. However, these are forward methods and are indeed neither iterative nor convergent. Here, we present a novel DNN-based convergent iterative algorithm that accelerates conventional optimization algorithms. We train a DNN to yield parameters in scaled gradient projection method. So far, these parameters have been chosen heuristically, but have shown to be crucial for good empirical performance. In simulation results, the proposed method significantly improves the empirical convergence rate over conventional optimization methods for various large-scale inverse problems in image processing.

Citations (1)

Summary

We haven't generated a summary for this paper yet.