Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inexact Proximal Cubic Regularized Newton Methods for Convex Optimization (1902.02388v2)

Published 6 Feb 2019 in math.OC

Abstract: In this paper, we use Proximal Cubic regularized Newton Methods (PCNM) to optimize the sum of a smooth convex function and a non-smooth convex function, where we use inexact gradient and Hessian, and an inexact subsolver for the cubic regularized second-order subproblem. We propose inexact variants of PCNM and accelerated PCNM respectively, and show that both variants can achieve the same convergence rate as in the exact case, provided that the errors in the inexact gradient, Hessian and subsolver decrease at appropriate rates. Meanwhile, in the online stochastic setting where data comes endlessly, we give the overall complexity of the proposed algorithms and show that they are as competitive as the stochastic gradient descent. Moreover, we give the overall complexity of the proposed algorithms in the finite-sum setting and show that it is as competitive as the state of the art variance reduced algorithms. Finally, we propose an efficient algorithm for the cubic regularized second-order subproblem, which can converge to an enough small neighborhood of the optimal solution in a superlinear rate.

Summary

We haven't generated a summary for this paper yet.