Papers
Topics
Authors
Recent
Search
2000 character limit reached

Topics in the Grothendieck conjecture for hyperbolic polycurves of dimension 2

Published 6 Feb 2019 in math.NT | (1902.02058v2)

Abstract: In this paper, we study the anabelian geometry of hyperbolic polycurves of dimension 2 over sub-p-adic fields. In 1-dimensional case, Mochizuki proved the Hom version of the Grothendieck conjecture for hyperbolic curves over sub-p-adic fields and the pro-p version of this conjecture. In 2-dimensional case, a naive analogue of this conjecture does not hold for hyperbolic polycurves over general sub-p-adic fields. Moreover, the Isom version of the pro-p Grothendieck conjecture does not hold in general. We explain these two phenomena and prove the Hom version of the Grothendieck conjecture for hyperbolic polycurves of dimension 2 under the assumption that the Grothendieck section conjecture holds for some hyperbolic curves.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.