Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sequential Importance Sampling Algorithm for Estimating Linear Extensions (1902.01704v2)

Published 2 Feb 2019 in cs.DS and math.PR

Abstract: In recent decades, a number of profound theorems concerning approximation of hard counting problems have appeared. These include estimation of the permanent, estimating the volume of a convex polyhedron, and counting (approximately) the number of linear extensions of a partially ordered set. All of these results have been achieved using probabilistic sampling methods, specifically Monte Carlo Markov Chain (MCMC) techniques. In each case, a rapidly mixing Markov chain is defined that is guaranteed to produce, with high probability, an accurate result after only a polynomial number of operations. Although of polynomial complexity, none of these results lead to a practical computational technique, nor do they claim to. The polynomials are of high degree and a non-trivial amount of computing is required to get even a single sample. Our aim in this paper is to present practical Monte Carlo methods for one of these problems, counting linear extensions. Like related work on estimating the coefficients of the reliability polynomial, our technique is based on improving the so-called Knuth counting algorithm by incorporating an importance function into the node selection technique giving a sequential importance sampling (SIS) method. We define and report performance on two importance functions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.