Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Ensemble SVM-based Approach for Voice Activity Detection (1902.01544v1)

Published 5 Feb 2019 in cs.SD, cs.LG, eess.AS, and stat.ML

Abstract: Voice activity detection (VAD), used as the front end of speech enhancement, speech and speaker recognition algorithms, determines the overall accuracy and efficiency of the algorithms. Therefore, a VAD with low complexity and high accuracy is highly desirable for speech processing applications. In this paper, we propose a novel training method on large dataset for supervised learning-based VAD system using support vector machine (SVM). Despite of high classification accuracy of support vector machines (SVM), trivial SVM is not suitable for classification of large data sets needed for a good VAD system because of high training complexity. To overcome this problem, a novel ensemble-based approach using SVM has been proposed in this paper.The performance of the proposed ensemble structure has been compared with a feedforward neural network (NN). Although NN performs better than single SVM-based VAD trained on a small portion of the training data, ensemble SVM gives accuracy comparable to neural network-based VAD. Ensemble SVM and NN give 88.74% and 86.28% accuracy respectively whereas the stand-alone SVM shows 57.05% accuracy on average on the test dataset.

Citations (8)

Summary

We haven't generated a summary for this paper yet.