Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter-Free Online Convex Optimization with Sub-Exponential Noise (1902.01500v3)

Published 5 Feb 2019 in cs.LG, math.OC, and stat.ML

Abstract: We consider the problem of unconstrained online convex optimization (OCO) with sub-exponential noise, a strictly more general problem than the standard OCO. In this setting, the learner receives a subgradient of the loss functions corrupted by sub-exponential noise and strives to achieve optimal regret guarantee, without knowledge of the competitor norm, i.e., in a parameter-free way. Recently, Cutkosky and Boahen (COLT 2017) proved that, given unbounded subgradients, it is impossible to guarantee a sublinear regret due to an exponential penalty. This paper shows that it is possible to go around the lower bound by allowing the observed subgradients to be unbounded via stochastic noise. However, the presence of unbounded noise in unconstrained OCO is challenging; existing algorithms do not provide near-optimal regret bounds or fail to have a guarantee. So, we design a novel parameter-free OCO algorithm for Banach space, which we call BANCO, via a reduction to betting on noisy coins. We show that BANCO achieves the optimal regret rate in our problem. Finally, we show the application of our results to obtain a parameter-free locally private stochastic subgradient descent algorithm, and the connection to the law of iterated logarithms.

Citations (40)

Summary

We haven't generated a summary for this paper yet.