Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Nurse Scheduling Problem Using Constraint Programming Technique (1902.01193v1)

Published 4 Feb 2019 in cs.AI

Abstract: Staff scheduling is a universal problem that can be encountered in many organizations, such as call centers, educational institution, industry, hospital, and any other public services. It is one of the most important aspects of workforce management strategy and the one that is most prone to errors or issues as there are many entities should be considered, such as the staff turnover, employee availability, time between rotations, unusual periods of activity, and even the last-minute shift changes. The nurse scheduling problem is a variant of staff scheduling problems which appoints nurses to shifts as well as rooms per day taking both hard constraints, i.e., hospital requirements, and soft constraints, i.e., nurse preferences, into account. Most algorithms used for scheduling problems fall short when it comes to the number of inputs they can handle. In this paper, constraint programming was developed to solve the nurse scheduling problem. The developed constraint programming model was then implemented using python programming language.

Citations (3)

Summary

We haven't generated a summary for this paper yet.