Papers
Topics
Authors
Recent
2000 character limit reached

Exact isoholonomic motion of the planar Purcell's swimmer

Published 4 Feb 2019 in cs.SY | (1902.01038v1)

Abstract: In this article we present the discrete-time isoholonomic problem of the planar Purcell's swimmer and solve it using the Discrete-time Pontryagin maximum principle. The 3-link Purcell's swimmer is a locomotion system moving in a low Reynolds number environment. The kinematics of the system evolves on a principal fiber bundle. A structure preserving discrete-time kinematic model of the system is obtained in terms of the local form of a discrete connection. An adapted version of the Discrete Maximum Principle on matrix Lie groups is then employed to come up with the necessary optimality conditions for an optimal state transfer while minimizing the control effort. These necessary conditions appear as a two-point boundary value problem and are solved using a numerical technique. Results from numerical experiments are presented to illustrate the algorithm.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.