Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Pedestrian Detection Using RetinaNet in ECCV 2018 Wider Pedestrian Detection Challenge (1902.01031v1)

Published 4 Feb 2019 in cs.CV

Abstract: The main essence of this paper is to investigate the performance of RetinaNet based object detectors on pedestrian detection. Pedestrian detection is an important research topic as it provides a baseline for general object detection and has a great number of practical applications like autonomous car, robotics and Security camera. Though extensive research has made huge progress in pedestrian detection, there are still many issues and open for more research and improvement. Recent deep learning based methods have shown state-of-the-art performance in computer vision tasks such as image classification, object detection, and segmentation. Wider pedestrian detection challenge aims at finding improve solutions for pedestrian detection problem. In this paper, We propose a pedestrian detection system based on RetinaNet. Our solution has scored 0.4061 mAP. The code is available at https://github.com/miltonbd/ECCV_2018_pedestrian_detection_challenege.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (3)

Summary

We haven't generated a summary for this paper yet.