Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sound Event Detection Using Graph Laplacian Regularization Based on Event Co-occurrence (1902.00816v2)

Published 2 Feb 2019 in cs.SD and eess.AS

Abstract: The types of sound events that occur in a situation are limited, and some sound events are likely to co-occur; for instance, dishes'' andglass jingling.'' In this paper, we propose a technique of sound event detection utilizing graph Laplacian regularization taking the sound event co-occurrence into account. In the proposed method, sound event occurrences are represented as a graph whose nodes indicate the frequency of event occurrence and whose edges indicate the co-occurrence of sound events. This graph representation is then utilized for sound event modeling, which is optimized under an objective function with a regularization term considering the graph structure. Experimental results obtained using TUT Sound Events 2016 development, 2017 development, and TUT Acoustic Scenes 2016 development indicate that the proposed method improves the detection performance of sound events by 7.9 percentage points compared to that of the conventional CNN-BiGRU-based method in terms of the segment-based F1-score. Moreover, the results show that the proposed method can detect co-occurring sound events more accurately than the conventional method.

Citations (12)

Summary

We haven't generated a summary for this paper yet.