Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

initKmix -- A Novel Initial Partition Generation Algorithm for Clustering Mixed Data using k-means-based Clustering (1902.00127v3)

Published 31 Jan 2019 in cs.LG and stat.ML

Abstract: Mixed datasets consist of both numeric and categorical attributes. Various k-means-based clustering algorithms have been developed for these datasets. Generally, these algorithms use random partition as a starting point, which tends to produce different clustering results for different runs. In this paper, we propose, initKmix, a novel algorithm for finding an initial partition for k-means-based clustering algorithms for mixed datasets. In the initKmix algorithm, a k-means-based clustering algorithm is run many times, and in each run, one of the attributes is used to create initial clusters for that run. The clustering results of various runs are combined to produce the initial partition. This initial partition is then used as a seed to a k-means-based clustering algorithm to cluster mixed data. Experiments with various categorical and mixed datasets showed that initKmix produced accurate and consistent results, and outperformed the random initial partition method and other state-of-the-art initialization methods. Experiments also showed that k-means-based clustering for mixed datasets with initKmix performed similar to or better than many state-of-the-art clustering algorithms for categorical and mixed datasets.

Citations (5)

Summary

We haven't generated a summary for this paper yet.