Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Optimization Framework for Task Sequencing in Curriculum Learning (1901.11478v3)

Published 31 Jan 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Curriculum learning in reinforcement learning is used to shape exploration by presenting the agent with increasingly complex tasks. The idea of curriculum learning has been largely applied in both animal training and pedagogy. In reinforcement learning, all previous task sequencing methods have shaped exploration with the objective of reducing the time to reach a given performance level. We propose novel uses of curriculum learning, which arise from choosing different objective functions. Furthermore, we define a general optimization framework for task sequencing and evaluate the performance of popular metaheuristic search methods on several tasks. We show that curriculum learning can be successfully used to: improve the initial performance, take fewer suboptimal actions during exploration, and discover better policies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (17)

Summary

We haven't generated a summary for this paper yet.