Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty Quantification in Deep MRI Reconstruction (1901.11228v3)

Published 31 Jan 2019 in cs.CV and cs.LG

Abstract: Reliable MRI is crucial for accurate interpretation in therapeutic and diagnostic tasks. However, undersampling during MRI acquisition as well as the overparameterized and non-transparent nature of deep learning (DL) leaves substantial uncertainty about the accuracy of DL reconstruction. With this in mind, this study aims to quantify the uncertainty in image recovery with DL models. To this end, we first leverage variational autoencoders (VAEs) to develop a probabilistic reconstruction scheme that maps out (low-quality) short scans with aliasing artifacts to the diagnostic-quality ones. The VAE encodes the acquisition uncertainty in a latent code and naturally offers a posterior of the image from which one can generate pixel variance maps using Monte-Carlo sampling. Accurately predicting risk requires knowledge of the bias as well, for which we leverage Stein's Unbiased Risk Estimator (SURE) as a proxy for mean-squared-error (MSE). Extensive empirical experiments are performed for Knee MRI reconstruction under different training losses (adversarial and pixel-wise) and unrolled recurrent network architectures. Our key observations indicate that: 1) adversarial losses introduce more uncertainty; and 2) recurrent unrolled nets reduce the prediction uncertainty and risk.

Citations (83)

Summary

We haven't generated a summary for this paper yet.