Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A quantitative stability estimate for the fractional Faber-Krahn inequality (1901.10845v2)

Published 30 Jan 2019 in math.AP and math.OC

Abstract: We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1.

Summary

We haven't generated a summary for this paper yet.