Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diversity Regularized Adversarial Learning (1901.10824v1)

Published 30 Jan 2019 in cs.LG, cs.CV, and stat.ML

Abstract: The two key players in Generative Adversarial Networks (GANs), the discriminator and generator, are usually parameterized as deep neural networks (DNNs). On many generative tasks, GANs achieve state-of-the-art performance but are often unstable to train and sometimes miss modes. A typical failure mode is the collapse of the generator to a single parameter configuration where its outputs are identical. When this collapse occurs, the gradient of the discriminator may point in similar directions for many similar points. We hypothesize that some of these shortcomings are in part due to primitive and redundant features extracted by discriminator and this can easily make the training stuck. We present a novel approach for regularizing adversarial models by enforcing diverse feature learning. In order to do this, both generator and discriminator are regularized by penalizing both negatively and positively correlated features according to their differentiation and based on their relative cosine distances. In addition to the gradient information from the adversarial loss made available by the discriminator, diversity regularization also ensures that a more stable gradient is provided to update both the generator and discriminator. Results indicate our regularizer enforces diverse features, stabilizes training, and improves image synthesis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Babajide O. Ayinde (8 papers)
  2. Keishin Nishihama (1 paper)
  3. Jacek M. Zurada (6 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.