Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reparameterizable Subset Sampling via Continuous Relaxations (1901.10517v5)

Published 29 Jan 2019 in cs.LG and stat.ML

Abstract: Many machine learning tasks require sampling a subset of items from a collection based on a parameterized distribution. The Gumbel-softmax trick can be used to sample a single item, and allows for low-variance reparameterized gradients with respect to the parameters of the underlying distribution. However, stochastic optimization involving subset sampling is typically not reparameterizable. To overcome this limitation, we define a continuous relaxation of subset sampling that provides reparameterization gradients by generalizing the Gumbel-max trick. We use this approach to sample subsets of features in an instance-wise feature selection task for model interpretability, subsets of neighbors to implement a deep stochastic k-nearest neighbors model, and sub-sequences of neighbors to implement parametric t-SNE by directly comparing the identities of local neighbors. We improve performance in all these tasks by incorporating subset sampling in end-to-end training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sang Michael Xie (21 papers)
  2. Stefano Ermon (279 papers)
Citations (85)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com