Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Learning Framework for Assessing Physical Rehabilitation Exercises (1901.10435v3)

Published 29 Jan 2019 in cs.LG and stat.ML

Abstract: Computer-aided assessment of physical rehabilitation entails evaluation of patient performance in completing prescribed rehabilitation exercises, based on processing movement data captured with a sensory system. Despite the essential role of rehabilitation assessment toward improved patient outcomes and reduced healthcare costs, existing approaches lack versatility, robustness, and practical relevance. In this paper, we propose a deep learning-based framework for automated assessment of the quality of physical rehabilitation exercises. The main components of the framework are metrics for quantifying movement performance, scoring functions for mapping the performance metrics into numerical scores of movement quality, and deep neural network models for generating quality scores of input movements via supervised learning. The proposed performance metric is defined based on the log-likelihood of a Gaussian mixture model, and encodes low-dimensional data representation obtained with a deep autoencoder network. The proposed deep spatio-temporal neural network arranges data into temporal pyramids, and exploits the spatial characteristics of human movements by using sub-networks to process joint displacements of individual body parts. The presented framework is validated using a dataset of ten rehabilitation exercises. The significance of this work is that it is the first that implements deep neural networks for assessment of rehabilitation performance.

Citations (128)

Summary

We haven't generated a summary for this paper yet.