Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifiability of Gaussian Structural Equation Models with Homogeneous and Heterogeneous Error Variances (1901.10134v3)

Published 29 Jan 2019 in stat.ML and cs.LG

Abstract: In this work, we consider the identifiability assumption of Gaussian linear structural equation models (SEMs) in which each variable is determined by a linear function of its parents plus normally distributed error. It has been shown that linear Gaussian structural equation models are fully identifiable if all error variances are the same or known. Hence, this work proves the identifiability of Gaussian SEMs with both homogeneous and heterogeneous unknown error variances. Our new identifiability assumption exploits not only error variances, but edge weights; hence, it is strictly milder than prior work on the identifiability result. We further provide a structure learning algorithm that is statistically consistent and computationally feasible, based on our new assumption. The proposed algorithm assumes that all relevant variables are observed, while it does not assume causal minimality and faithfulness. We verify our theoretical findings through simulations and real multivariate data, and compare our algorithm to state-of-the-art PC, GES and GDS algorithms.

Citations (14)

Summary

We haven't generated a summary for this paper yet.