Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic and Influence aware k-Representative Queries over Social Streams (1901.10109v1)

Published 29 Jan 2019 in cs.SI and cs.DB

Abstract: Massive volumes of data continuously generated on social platforms have become an important information source for users. A primary method to obtain fresh and valuable information from social streams is \emph{social search}. Although there have been extensive studies on social search, existing methods only focus on the \emph{relevance} of query results but ignore the \emph{representativeness}. In this paper, we propose a novel Semantic and Influence aware $k$-Representative ($k$-SIR) query for social streams based on topic modeling. Specifically, we consider that both user queries and elements are represented as vectors in the topic space. A $k$-SIR query retrieves a set of $k$ elements with the maximum \emph{representativeness} over the sliding window at query time w.r.t. the query vector. The representativeness of an element set comprises both semantic and influence scores computed by the topic model. Subsequently, we design two approximation algorithms, namely \textsc{Multi-Topic ThresholdStream} (MTTS) and \textsc{Multi-Topic ThresholdDescend} (MTTD), to process $k$-SIR queries in real-time. Both algorithms leverage the ranked lists maintained on each topic for $k$-SIR processing with theoretical guarantees. Extensive experiments on real-world datasets demonstrate the effectiveness of $k$-SIR query compared with existing methods as well as the efficiency and scalability of our proposed algorithms for $k$-SIR processing.

Citations (2)

Summary

We haven't generated a summary for this paper yet.