Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analogies Explained: Towards Understanding Word Embeddings (1901.09813v2)

Published 28 Jan 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Word embeddings generated by neural network methods such as word2vec (W2V) are well known to exhibit seemingly linear behaviour, e.g. the embeddings of analogy "woman is to queen as man is to king" approximately describe a parallelogram. This property is particularly intriguing since the embeddings are not trained to achieve it. Several explanations have been proposed, but each introduces assumptions that do not hold in practice. We derive a probabilistically grounded definition of paraphrasing that we re-interpret as word transformation, a mathematical description of "$w_x$ is to $w_y$". From these concepts we prove existence of linear relationships between W2V-type embeddings that underlie the analogical phenomenon, identifying explicit error terms.

Citations (135)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com