Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cycles over DGH-semicategories and pairings in categorical Hopf-cyclic cohomology (1901.09580v4)

Published 28 Jan 2019 in math.CT and math.QA

Abstract: Let $H$ be a Hopf algebra and let $\mathcal D_H$ be a Hopf-module category. We describe the cocycles and coboundaries for the Hopf cyclic cohomology of $\mathcal D_H$, which correspond respectively to categorified cycles and vanishing cycles over $\mathcal D_H$. An important role in our work is played by semicategories, which are categories that may not contain identity maps. In particular, a cycle over $\mathcal D_H$ consists of a differential graded $H$-module semicategory equipped with a trace on endomorphism groups satisfying some conditions. Using a pairing on cycles, we obtain a pairing $HCp(\mathcal{C}) \otimes HCq(\mathcal{C}') \longrightarrow HC{p+q}(\mathcal{C} \otimes \mathcal{C}')$ on cyclic cohomology groups for small $k$-linear categories $\mathcal C$ and $\mathcal C'$.

Summary

We haven't generated a summary for this paper yet.