Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nearly Optimal Sparse Polynomial Multiplication

Published 27 Jan 2019 in cs.SC and cs.DS | (1901.09355v6)

Abstract: In the sparse polynomial multiplication problem, one is asked to multiply two sparse polynomials f and g in time that is proportional to the size of the input plus the size of the output. The polynomials are given via lists of their coefficients F and G, respectively. Cole and Hariharan (STOC 02) have given a nearly optimal algorithm when the coefficients are positive, and Arnold and Roche (ISSAC 15) devised an algorithm running in time proportional to the "structural sparsity" of the product, i.e. the set supp(F)+supp(G). The latter algorithm is particularly efficient when there not "too many cancellations" of coefficients in the product. In this work we give a clean, nearly optimal algorithm for the sparse polynomial multiplication problem.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.