Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Detecting GANs and Retouching based Synthetic Alterations (1901.09237v1)

Published 26 Jan 2019 in cs.CV

Abstract: Digitally retouching images has become a popular trend, with people posting altered images on social media and even magazines posting flawless facial images of celebrities. Further, with advancements in Generative Adversarial Networks (GANs), now changing attributes and retouching have become very easy. Such synthetic alterations have adverse effect on face recognition algorithms. While researchers have proposed to detect image tampering, detecting GANs generated images has still not been explored. This paper proposes a supervised deep learning algorithm using Convolutional Neural Networks (CNNs) to detect synthetically altered images. The algorithm yields an accuracy of 99.65% on detecting retouching on the ND-IIITD dataset. It outperforms the previous state of the art which reported an accuracy of 87% on the database. For distinguishing between real images and images generated using GANs, the proposed algorithm yields an accuracy of 99.83%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Anubhav Jain (33 papers)
  2. Richa Singh (76 papers)
  3. Mayank Vatsa (71 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.