Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization along Families of Periodic and Quasiperiodic Orbits in Dynamical Systems with Delay (1901.09121v1)

Published 26 Jan 2019 in math.DS

Abstract: This paper generalizes a previously-conceived, continuation-based optimization technique for scalar objective functions on constraint manifolds to cases of periodic and quasiperiodic solutions of delay-differential equations. A Lagrange formalism is used to construct adjoint conditions that are linear and homogenous in the unknown Lagrange multipliers. As a consequence, it is shown how critical points on the constraint manifold can be found through several stages of continuation along a sequence of connected one-dimensional manifolds of solutions to increasing subsets of the necessary optimality conditions. Due to the presence of delayed and advanced arguments in the original and adjoint differential equations, care must be taken to determine the degree of smoothness of the Lagrange multipliers with respect to time. Such considerations naturally lead to a formulation in terms of multi-segment boundary-value problems (BVPs), including the possibility that the number of segments may change, or that their order may permute, during continuation. The methodology is illustrated using the software package coco on periodic orbits of both linear and nonlinear delay-differential equations, keeping in mind that closed-form solutions are not typically available even in the linear case. Finally, we demonstrate optimization on a family of quasiperiodic invariant tori in an example unfolding of a Hopf bifurcation with delay and parametric forcing. The quasiperiodic case is a further original contribution to the literature on optimization constrained by partial differential BVPs.

Summary

We haven't generated a summary for this paper yet.