Global Well-Posedness for NLS with a Class of $H^s$-Supercritical Data (1901.08868v1)
Abstract: We study the Cauchy problem for NLS with a class of $Hs$-super-critical data \begin{align} & {\rm i}u_t +\Delta u+ \lambda |u|{2\kappa} u =0, \quad u(0)=u_0 \label{NLSabstract} \end{align} and show that \eqref{NLSabstract} is globally well-posed and scattering in $\alpha$-modulation spaces $M{s,\alpha}_{2,1}$ ($\alpha\in [0,1), \ s> d\alpha/2-\alpha/\kappa$, $\kappa\in \mathbb{N}$ and $\kappa \geq 2/d$) for the sufficiently small data. Moreover, NLS is ill-posed in $M{s,\alpha}_{2,1}$ if $s< d\alpha/2-\alpha/\kappa$. In particular, we obtain a class of initial data $u_0$ satisfying for any $M\gg 1$, \begin{align} |u_0|2 \sim M{1/\kappa-d/2 }, \ \ |u_0|\infty \ =\infty , \ \ |u_0|{M{s,\alpha}{2,1}} \geq M{(1-\alpha)/\kappa}, \ \ \ |u_0|{B{s(\kappa)}{2,\infty}} =\infty \nonumber \end{align} such that NLS is globally well-posed in $M{s,\alpha}_{2,1}$ if $\kappa>2/d, \ \alpha\in [0,1)\ d\alpha/2-\alpha/\kappa <s < s(\kappa):= d/2-1/\kappa$. Such a kind of data are super-critical in $H{s(\kappa)}$ and have infinite amplitude.