Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Matrix-Vector Multiplication: A Convolutional Coding Approach (1901.08716v1)

Published 25 Jan 2019 in cs.IT, cs.DC, math.IT, math.NA, and cs.NA

Abstract: Distributed computing systems are well-known to suffer from the problem of slow or failed nodes; these are referred to as stragglers. Straggler mitigation (for distributed matrix computations) has recently been investigated from the standpoint of erasure coding in several works. In this work we present a strategy for distributed matrix-vector multiplication based on convolutional coding. Our scheme can be decoded using a low-complexity peeling decoder. The recovery process enjoys excellent numerical stability as compared to Reed-Solomon coding based approaches (which exhibit significant problems owing their badly conditioned decoding matrices). Finally, our schemes are better matched to the practically important case of sparse matrix-vector multiplication as compared to many previous schemes. Extensive simulation results corroborate our findings.

Citations (30)

Summary

We haven't generated a summary for this paper yet.