Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Approximating Wasserstein Barycenter (1901.08686v3)

Published 24 Jan 2019 in math.OC and cs.DS

Abstract: We study the complexity of approximating Wassertein barycenter of $m$ discrete measures, or histograms of size $n$ by contrasting two alternative approaches, both using entropic regularization. The first approach is based on the Iterative Bregman Projections (IBP) algorithm for which our novel analysis gives a complexity bound proportional to $\frac{mn2}{\varepsilon2}$ to approximate the original non-regularized barycenter. Using an alternative accelerated-gradient-descent-based approach, we obtain a complexity proportional to $\frac{mn{2.5}}{\varepsilon} $. As a byproduct, we show that the regularization parameter in both approaches has to be proportional to $\varepsilon$, which causes instability of both algorithms when the desired accuracy is high. To overcome this issue, we propose a novel proximal-IBP algorithm, which can be seen as a proximal gradient method, which uses IBP on each iteration to make a proximal step. We also consider the question of scalability of these algorithms using approaches from distributed optimization and show that the first algorithm can be implemented in a centralized distributed setting (master/slave), while the second one is amenable to a more general decentralized distributed setting with an arbitrary network topology.

Citations (28)

Summary

We haven't generated a summary for this paper yet.