Papers
Topics
Authors
Recent
2000 character limit reached

Is Pretraining Necessary for Hyperspectral Image Classification?

Published 24 Jan 2019 in cs.CV | (1901.08658v1)

Abstract: We address two questions for training a convolutional neural network (CNN) for hyperspectral image classification: i) is it possible to build a pre-trained network? and ii) is the pre-training effective in furthering the performance? To answer the first question, we have devised an approach that pre-trains a network on multiple source datasets that differ in their hyperspectral characteristics and fine-tunes on a target dataset. This approach effectively resolves the architectural issue that arises when transferring meaningful information between the source and the target networks. To answer the second question, we carried out several ablation experiments. Based on the experimental results, a network trained from scratch performs as good as a network fine-tuned from a pre-trained network. However, we observed that pre-training the network has its own advantage in achieving better performances when deeper networks are required.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.