Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Legendrian submanifolds from Bohr-Sommerfeld covers of monotone Lagrangian tori (1901.08415v5)

Published 24 Jan 2019 in math.SG

Abstract: By a result due to Ziltener, there exist no closed embedded Bohr-Sommerfeld Lagrangians inside $\mathbb CPn$ for the prequantisation bundle whose total space is the standard contact sphere. On the other hand, any embedded monotone Lagrangian torus has a canonical nontrivial cover which is a Bohr-Sommerfeld immersion. We draw the front projections for the corresponding Legendrian lifts inside a contact Darboux ball of the threefold covers of both the two-dimensional Clifford and Chekanov tori (the former is the Legendrian link of the Harvey-Lawson special Lagrangian cone), and compute the associated Chekanov-Eliashberg algebras. Although these Legendrians are not loose, we show that they both admit exact Lagrangian cobordisms to the loose Legendrian sphere; they hence admit exact Lagrangian caps in the symplectisation, which are non-regular Lagrangian cobordisms. Along the way, we also compute bilinearised Legendrian contact homology of a general Legendrian surface in the standard contact vector space when all Reeb chords are of positive degree, as well as the augmentation variety in the case of tori.

Summary

We haven't generated a summary for this paper yet.