Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Olshanski's Centralizer Construction and Deligne Tensor Categories (1901.08370v1)

Published 24 Jan 2019 in math.RT

Abstract: The family of Deligne tensor categories $\mathrm{Rep}(GL_t)$ is obtained from the categories $\mathbf{Rep}~GL(n)$ of finite dimensional representations of groups $GL(n)$ by interpolating the integer parameter $n$ to complex values. Therefore, it is a valuable tool for generalizing classical statements of representation theory. In this work we introduce and prove the generalization of Olshanski's centralizer construction of the Yangian $Y(\mathfrak{gl}n)$. Namely, we prove that for generic $t\in\mathbb{C}$ the centralizer subalgebra of $GL_t$-invariants in the universal enveloping algebra $U(\mathfrak{gl{t+n}})$ is the tensor product of $Y(\mathfrak{gl}n)$ and the center of $U(\mathfrak{gl{t}})$. The main feature of this construction is that it does not involve passing to a limit, contrary to the original construction of Olshanski.

Summary

We haven't generated a summary for this paper yet.