Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalization of Spoofing Countermeasures: a Case Study with ASVspoof 2015 and BTAS 2016 Corpora (1901.08025v1)

Published 23 Jan 2019 in cs.MM and eess.AS

Abstract: Voice-based biometric systems are highly prone to spoofing attacks. Recently, various countermeasures have been developed for detecting different kinds of attacks such as replay, speech synthesis (SS) and voice conversion (VC). Most of the existing studies are conducted with a specific training set defined by the evaluation protocol. However, for realistic scenarios, selecting appropriate training data is an open challenge for the system administrator. Motivated by this practical concern, this work investigates the generalization capability of spoofing countermeasures in restricted training conditions where speech from a broad attack types are left out in the training database. We demonstrate that different spoofing types have considerably different generalization capabilities. For this study, we analyze the performance using two kinds of features, mel-frequency cepstral coefficients (MFCCs) which are considered as baseline and recently proposed constant Q cepstral coefficients (CQCCs). The experiments are conducted with standard Gaussian mixture model - maximum likelihood (GMM-ML) classifier on two recently released spoofing corpora: ASVspoof 2015 and BTAS 2016 that includes cross-corpora performance analysis. Feature-level analysis suggests that static and dynamic coefficients of spectral features, both are important for detecting spoofing attacks in the real-life condition.

Citations (46)

Summary

We haven't generated a summary for this paper yet.