Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Central limit theorem for linear spectral statistics of general separable sample covariance matrices with applications (1901.07746v1)

Published 23 Jan 2019 in math.ST, math.PR, and stat.TH

Abstract: In this paper, we consider the separable covariance model, which plays an important role in wireless communications and spatio-temporal statistics and describes a process where the time correlation does not depend on the spatial location and the spatial correlation does not depend on time. We established a central limit theorem for linear spectral statistics of general separable sample covariance matrices in the form of $\mathbf S_n=\frac1n\mathbf T_{1n}\mathbf X_n\mathbf T_{2n}\mathbf X_n*\mathbf T_{1n}*$ where $\mathbf X_n=(x_{jk})$ is of $m_1\times m_2$ dimension, the entries ${x_{jk}, j=1,...,m_1, k=1,...,m_2}$ are independent and identically distributed complex variables with zero means and unit variances, $\mathbf T_{1n}$ is a $p\times m_1 $ complex matrix and $\mathbf T_{2n}$ is an $m_2\times m_2$ Hermitian matrix. We then apply this general central limit theorem to the problem of testing white noise in time series.

Summary

We haven't generated a summary for this paper yet.