Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speech Separation Using Gain-Adapted Factorial Hidden Markov Models (1901.07604v1)

Published 22 Jan 2019 in cs.SD and eess.AS

Abstract: We present a new probabilistic graphical model which generalizes factorial hidden Markov models (FHMM) for the problem of single-channel speech separation (SCSS) in which we wish to separate the two speech signals $X(t)$ and $V(t)$ from a single recording of their mixture $Y(t)=X(t)+V(t)$ using the trained models of the speakers' speech signals. Current techniques assume the data used in the training and test phases of the separation model have the same loudness. In this paper, we introduce GFHMM, gain adapted FHMM, to extend SCSS to the general case in which $Y(t)=g_xX(t)+g_vV(t)$, where $g_x$ and $g_v$ are unknown gain factors. GFHMM consists of two independent-state HMMs and a hidden node which model spectral patterns and gain difference, respectively. A novel inference method is presented using the Viterbi algorithm and quadratic optimization with minimal computational overhead. Experimental results, conducted on 180 mixtures with gain differences from 0 to 15~dB, show that the proposed technique significantly outperforms FHMM and its memoryless counterpart, i.e., vector quantization (VQ)-based SCSS.

Summary

We haven't generated a summary for this paper yet.