Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RPC: A Large-Scale Retail Product Checkout Dataset (1901.07249v1)

Published 22 Jan 2019 in cs.CV

Abstract: Over recent years, emerging interest has occurred in integrating computer vision technology into the retail industry. Automatic checkout (ACO) is one of the critical problems in this area which aims to automatically generate the shopping list from the images of the products to purchase. The main challenge of this problem comes from the large scale and the fine-grained nature of the product categories as well as the difficulty for collecting training images that reflect the realistic checkout scenarios due to continuous update of the products. Despite its significant practical and research value, this problem is not extensively studied in the computer vision community, largely due to the lack of a high-quality dataset. To fill this gap, in this work we propose a new dataset to facilitate relevant research. Our dataset enjoys the following characteristics: (1) It is by far the largest dataset in terms of both product image quantity and product categories. (2) It includes single-product images taken in a controlled environment and multi-product images taken by the checkout system. (3) It provides different levels of annotations for the check-out images. Comparing with the existing datasets, ours is closer to the realistic setting and can derive a variety of research problems. Besides the dataset, we also benchmark the performance on this dataset with various approaches. The dataset and related resources can be found at \url{https://rpc-dataset.github.io/}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiu-Shen Wei (41 papers)
  2. Quan Cui (10 papers)
  3. Lei Yang (373 papers)
  4. Peng Wang (834 papers)
  5. Lingqiao Liu (114 papers)
Citations (120)

Summary

We haven't generated a summary for this paper yet.