Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lipschitz spaces adapted to Schrödinger operators and regularity properties (1901.06898v2)

Published 21 Jan 2019 in math.FA, math.AP, and math.CA

Abstract: Consider the Schr\"odinger operator $\mathcal{L}=-\Delta+V$ in $\mathbb{R}n, n\ge 3,$ where $V$ is a nonnegative potential satisfying a reverse H\"older condition of the type \begin{equation*} \left( \frac{1}{|B|}\int_B V(y)qdy\right){1/q}\le \frac{C}{|B|}\int_B V(y)dy, \, \text{{ for some }}q>n/2. \end{equation*} We define $\Lambda\alpha_{\mathcal{L}},\, 0<\alpha <2,$ the class of measurable functions such that $$ |\rho(\cdot){-\alpha}f(\cdot)|_\infty<\infty \quad \, \, \text{and}:: \quad \sup_{|z|>0}\frac{|f(\cdot+z)+f(\cdot-z)-2f(\cdot)|\infty}{|z|\alpha}<\infty, $$ where $\rho$ is the critical radius function associated to $\mathcal{L}$. Let $W_y f = e{-y\mathcal{L}}f$ be the heat semigroup of $\mathcal{L}$. Given $\alpha >0,$ we denote by $\Lambda{\alpha/2}{{W}}$ the set of functions $f$ which satisfy \begin{equation*} |\rho(\cdot){-\alpha}f(\cdot)|_\infty<\infty \hbox{ and } \Big|\partial_yk{W}_y f \Big|{L\infty(\mathbb{R}{n})}\leq C\alpha y{-k+\alpha/2},\;: \, {\rm with }\, k=[\alpha/2]+1, y>0. \end{equation*} We prove that for $0<\alpha \le 2-n/q$, $\Lambda\alpha_{\mathcal{L}} = \Lambda_{\alpha/2}{{W}}.$ As application, we obtain regularity properties of fractional powers (positive and negative) of the operator $\mathcal{L}$, Schr\"odinger Riesz transforms, Bessel potentials and multipliers of Laplace transforms type. The proofs of these results need in an essential way the language of semigroups. Parallel results are obtained for the classes defined through the Poisson semigroup, $P_yf= e{-y\sqrt{\mathcal{L}}}f.$

Summary

We haven't generated a summary for this paper yet.