Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Periodic Cauchy Problem for one Two-dimensional Generalization of the Benjamin-Ono Equation in Sobolev Spaces of Low Regularity (1901.06329v1)

Published 18 Jan 2019 in math.AP

Abstract: In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin-Ono equation $$\left. \begin{array}{rl} u_t+\mathcal H \Delta u +uu_x &\hspace{-2mm}=0,\qquad\qquad (x,y)\in\mathbb T2,\; t\in\mathbb R,\ u(x,y,0)&\hspace{-2mm}=u_0(x,y), \end{array} \right}\,,$$ where $\mathcal H$ denotes the Hilbert transform with respect to the variable $x$ and $\Delta$ is the Laplacian with respect to the spatial variables $x$ and $y$, is locally well-posed in the periodic Sobolev space $Hs(\mathbb T2)$, with $s>7/4$.

Summary

We haven't generated a summary for this paper yet.