Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modular Verification for Almost-Sure Termination of Probabilistic Programs (1901.06087v3)

Published 18 Jan 2019 in cs.LO and cs.PL

Abstract: In this work, we consider the almost-sure termination problem for probabilistic programs that asks whether a given probabilistic program terminates with probability 1. Scalable approaches for program analysis often rely on modularity as their theoretical basis. In non-probabilistic programs, the classical variant rule (V-rule) of Floyd-Hoare logic provides the foundation for modular analysis. Extension of this rule to almost-sure termination of probabilistic programs is quite tricky, and a probabilistic variant was proposed in [Fioriti and Hermanns 2015]. While the proposed probabilistic variant cautiously addresses the key issue of integrability, we show that the proposed modular rule is still not sound for almost-sure termination of probabilistic programs. Besides establishing unsoundness of the previous rule, our contributions are as follows: First, we present a sound modular rule for almost-sure termination of probabilistic programs. Our approach is based on a novel notion of descent supermartingales. Second, for algorithmic approaches, we consider descent supermartingales that are linear and show that they can be synthesized in polynomial time. Finally, we present experimental results on a variety of benchmarks and several natural examples that model various types of nested while loops in probabilistic programs and demonstrate that our approach is able to efficiently prove their almost-sure termination property.

Citations (1)

Summary

We haven't generated a summary for this paper yet.