Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel Change-point Detection with Auxiliary Deep Generative Models (1901.06077v1)

Published 18 Jan 2019 in stat.ML and cs.LG

Abstract: Detecting the emergence of abrupt property changes in time series is a challenging problem. Kernel two-sample test has been studied for this task which makes fewer assumptions on the distributions than traditional parametric approaches. However, selecting kernels is non-trivial in practice. Although kernel selection for two-sample test has been studied, the insufficient samples in change point detection problem hinder the success of those developed kernel selection algorithms. In this paper, we propose KL-CPD, a novel kernel learning framework for time series CPD that optimizes a lower bound of test power via an auxiliary generative model. With deep kernel parameterization, KL-CPD endows kernel two-sample test with the data-driven kernel to detect different types of change-points in real-world applications. The proposed approach significantly outperformed other state-of-the-art methods in our comparative evaluation of benchmark datasets and simulation studies.

Citations (65)

Summary

We haven't generated a summary for this paper yet.