Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diverse mini-batch Active Learning (1901.05954v1)

Published 17 Jan 2019 in cs.LG and stat.ML

Abstract: We study the problem of reducing the amount of labeled training data required to train supervised classification models. We approach it by leveraging Active Learning, through sequential selection of examples which benefit the model most. Selecting examples one by one is not practical for the amount of training examples required by the modern Deep Learning models. We consider the mini-batch Active Learning setting, where several examples are selected at once. We present an approach which takes into account both informativeness of the examples for the model, as well as the diversity of the examples in a mini-batch. By using the well studied K-means clustering algorithm, this approach scales better than the previously proposed approaches, and achieves comparable or better performance.

Citations (145)

Summary

We haven't generated a summary for this paper yet.