Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Streaming Video Quality from Encrypted Traffic: Practical Models and Deployment Experience (1901.05800v3)

Published 17 Jan 2019 in cs.NI

Abstract: Inferring the quality of streaming video applications is important for Internet service providers, but the fact that most video streams are encrypted makes it difficult to do so. We develop models that infer quality metrics (\ie, startup delay and resolution) for encrypted streaming video services. Our paper builds on previous work, but extends it in several ways. First, the model works in deployment settings where the video sessions and segments must be identified from a mix of traffic and the time precision of the collected traffic statistics is more coarse (\eg, due to aggregation). Second, we develop a single composite model that works for a range of different services (i.e., Netflix, YouTube, Amazon, and Twitch), as opposed to just a single service. Third, unlike many previous models, the model performs predictions at finer granularity (\eg, the precise startup delay instead of just detecting short versus long delays) allowing to draw better conclusions on the ongoing streaming quality. Fourth, we demonstrate the model is practical through a 16-month deployment in 66 homes and provide new insights about the relationships between Internet "speed" and the quality of the corresponding video streams, for a variety of services; we find that higher speeds provide only minimal improvements to startup delay and resolution.

Citations (5)

Summary

We haven't generated a summary for this paper yet.