Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$λφ^4$ Theory II: The Broken Phase Beyond NNNN(NNNN)LO (1901.05023v2)

Published 15 Jan 2019 in hep-th, cond-mat.stat-mech, hep-lat, and hep-ph

Abstract: We extend the study of the two-dimensional euclidean $\phi4$ theory initiated in ref. [1] to the $\mathbb Z_2$ broken phase. In particular, we compute in perturbation theory up to N$4$LO in the quartic coupling the vacuum energy, the vacuum expectation value of $\phi$ and the mass gap of the theory. We determine the large order behavior of the perturbative series by finding the leading order finite action complex instanton configuration in the $\mathbb Z_2$ broken phase. Using an appropriate conformal mapping, we then Borel resum the perturbative series. Interestingly enough, the truncated perturbative series for the vacuum energy and the vacuum expectation value of the field is reliable up to the critical coupling where a second order phase transition occurs, and breaks down around the transition for the mass gap. We compute the vacuum energy using also an alternative perturbative series, dubbed exact perturbation theory, that allows us to effectively reach N$8$LO in the quartic coupling. In this way we can access the strong coupling region of the $\mathbb Z_2$ broken phase and test Chang duality by comparing the vacuum energies computed in three different descriptions of the same physical system. This result can also be considered as a confirmation of the Borel summability of the theory. Our results are in very good agreement (and with comparable or better precision) with those obtained by Hamiltonian truncation methods. We also discuss some subtleties related to the physical interpretation of the mass gap and provide evidence that the kink mass can be obtained by analytic continuation from the unbroken to the broken phase.

Summary

We haven't generated a summary for this paper yet.