Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Diffusion Reach Probabilities via Representation Learning on Social Networks (1901.03829v1)

Published 12 Jan 2019 in cs.SI, cs.LG, and stat.ML

Abstract: Diffusion reach probability between two nodes on a network is defined as the probability of a cascade originating from one node reaching to another node. An infinite number of cascades would enable calculation of true diffusion reach probabilities between any two nodes. However, there exists only a finite number of cascades and one usually has access only to a small portion of all available cascades. In this work, we addressed the problem of estimating diffusion reach probabilities given only a limited number of cascades and partial information about underlying network structure. Our proposed strategy employs node representation learning to generate and feed node embeddings into machine learning algorithms to create models that predict diffusion reach probabilities. We provide experimental analysis using synthetically generated cascades on two real-world social networks. Results show that proposed method is superior to using values calculated from available cascades when the portion of cascades is small.

Citations (1)

Summary

We haven't generated a summary for this paper yet.