Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Event Causality Detection in Tweets (1901.03526v1)

Published 11 Jan 2019 in cs.IR and cs.CL

Abstract: Nowadays, Twitter has become a great source of user-generated information about events. Very often people report causal relationships between events in their tweets. Automatic detection of causality information in these events might play an important role in predictive event analytics. Existing approaches include both rule-based and data-driven supervised methods. However, it is challenging to correctly identify event causality using only linguistic rules due to the highly unstructured nature and grammatical incorrectness of social media short text such as tweets. Also, it is difficult to develop a data-driven supervised method for event causality detection in tweets due to insufficient contextual information. This paper proposes a novel event context word extension technique based on background knowledge. To demonstrate the effectiveness of our proposed event context word extension technique, we develop a feed-forward neural network based approach to detect event causality from tweets. Extensive experiments demonstrate the superiority of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Humayun Kayesh (1 paper)
  2. Junhu Wang (6 papers)
  3. Md. Saiful Islam (57 papers)
Citations (16)