Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A discretization of Caputo derivatives with application to time fractional SDEs and gradient flows (1901.03159v2)

Published 10 Jan 2019 in math.NA and cs.NA

Abstract: We consider a discretization of Caputo derivatives resulted from deconvolving a scheme for the corresponding Volterra integral. Properties of this discretization, including signs of the coefficients, comparison principles, and stability of the corresponding implicit schemes, are proved by its linkage to Volterra integrals with completely monotone kernels. We then apply the backward scheme corresponding to this discretization to two time fractional dissipative problems, and these implicit schemes are helpful for the analysis of the corresponding problems. In particular, we show that the overdamped generalized Langevin equation with fractional noise has a unique limiting measure for strongly convex potentials and establish the convergence of numerical solutions to the strong solutions of time fractional gradient flows. The proposed scheme and schemes derived using the same philosophy can be useful for many other applications as well.

Citations (11)

Summary

We haven't generated a summary for this paper yet.